A Pattern Search Filter Method for Nonlinear Programming without Derivatives
نویسندگان
چکیده
This paper formulates and analyzes a pattern search method for general constrained optimization based on filter methods for step acceptance. Roughly, a filter method accepts a step that either improves the objective function value or the value of some function that measures the constraint violation. The new algorithm does not compute or approximate any derivatives, penalty constants or Lagrange multipliers. A key feature of the new algorithm is that it preserves the useful division into global SEARCH and local POLL steps. It is shown here that the algorithm identifies limit points at which optimality conditions depend on local smoothness of the functions. Stronger optimality conditions are guaranteed for smoother functions. In the absence of general constraints, the proposed algorithm and its convergence analysis generalize the previous work on unconstrained, bound constrained and linearly constrained generalized pattern search. The algorithm is illustrated on some test examples and on an industrial wing planform engineering design application.
منابع مشابه
Derivative-free nonlinear optimization filter simplex
The filter method is a technique for solving nonlinear programming problems. The filter algorithm has two phases in each iteration. The first one reduces a measure of infeasibility, while in the second the objective function value is reduced. In real optimization problems, usually the objective function is not differentiable or its derivatives are unknown. In these cases it becomes essential to...
متن کاملA Globally Convergent Augmented Lagrangian Pattern Search Algorithm for Optimization with General Constraints and Simple Bounds
We give a pattern search method for nonlinearly constrained optimization that is an adaption of a bound constrained augmented Lagrangian method first proposed by Conn, Gould, and Toint [SIAM J. Numer. Anal., 28 (1991), pp. 545–572]. In the pattern search adaptation, we solve the bound constrained subproblem approximately using a pattern search method. The stopping criterion proposed by Conn, Go...
متن کاملA Particle Swarm Pattern Search Method for Bound Constrained Nonlinear Optimization
In this paper we develop, analyze, and test a new algorithm for the global minimization of a function subject to simple bounds without the use of derivatives. The underlying algorithm is a pattern search method, more specifically a coordinate search method, which guarantees convergence to stationary points from arbitrary starting points. In the optional search phase of pattern search we apply a...
متن کاملA TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING WITH NEW SIMPLE FILTER AS AN EFFICIENT AND ROBUST FIRST-ORDER RELIABILITY METHOD
The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most ...
متن کاملModify the linear search formula in the BFGS method to achieve global convergence.
<span style="color: #333333; font-family: Calibri, sans-serif; font-size: 13.3333px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-dec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 14 شماره
صفحات -
تاریخ انتشار 2004